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Beam Propagation Analysis of the Nonlinear
Tapered Optical Waveguide

Hwei-Yuan Liu and Way-Seen Wang

Abstract-A study of the transient behavior of nonlinear ta-
pered optical waveguide is presented. The Fresnel equation with
an input Gaussian field distribution is solved numerically using
a combination of the semivectorial-polarized finite difference
method and the Rtmge-Kutta method. The calculated results
show that the tapered nonlinear waveguides have better waveg-
uiding characteristics in potential applications.

I. INTRODUCTION

I

N THE PAST decade, the properties of nonlinear guided
waves supported by nonlinear media have been studied

extensively [1]–[4]. Intensity-dependent field pattern can be
used for waveguide thresholding and waveguide switching
operation, which lead to devices such as optical limiters and
light-controlled spatial scanner to be realizable [2]. Hence,
it is widely recognized that optical, especially all-optical,
waveguide devices may become important components in
communication and signal processing systems.

Previous works [1]–[4] on the propagation of nonlinear
wave appears interesting in the case of a waveguide bounded
by nonlinear media for spatial soliton emission and some novel
effects are observed. Recently, it was reported that with a
linear taper in the input waveguide [5], the optical transmis-
sion efficiency is increased. However, the wave propagation
behavior of nonlinear tapered waveguides, especially in the
early stage of nonlinear evolution, to our knowledge, have not
be studied in detail. In this work, the beam propagation method
with a semivectorial approximation [6] is used to analyze the
“transient” behavior of a nonlinear tapered waveguide.

The numerical methods commonly used for solving the
Fresnel equation, derived from the Helmholtz equation, are the
fast Fourier transform method (FFTM) and the finite difference
method (FDM). However, it was reported that the equation
discretized by FDM is more efficient and stable than that
by FFTM [7]. Usually, FDM starts with a discretization of
the Fresnel equation, including both the transverse and the
propagation components, by the central difference scheme [7],
[8]. However, the Crank-Nicolson scheme for the propagation
component is implicit, which takes a lot of computing time,
especially when the full-wave analysis is considered. Recently,
to save the computing time, the implicit Crank-Nicolson was
replaced by the explicit Runge-Kutta fourth order formulas [8].
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Fig. 1. The typical field distributions of (a) tapered and (b) uniform nonlinear
waveguides.

Previous demonstration [5] was for a linear partial differential
equation. However, it is well known that the Runge-Kutta
method is derived for ordinary differential equations irregard-
less of whether the equation is linear or nonlinear. In this work,
it is shown that the explicit method [5] is also good for the
nonlinear partial differential equations, especially that for the
nonlinear tapered waveguide mentioned previously.

II. SIMULATION AND RESULTS

Consider an optical waveguide of refractive index ng
bounded by two nonlinear media of indices n. = no + a IE 12

as shown in Fig. 1, where a is the nonlinear coefficient and E
is the propagating field. With the assumption that the guided
optical wave is slowly varying and paraxially propagating, the
Helmholtz equation can be reduced to the Fresnel equation
as given by
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Fig. 2. The formation distmce (left) and the offset (right) ofsolitons. Solid
line tapered waveguide; dashed tine: uniform waveguide.

where k. is the free space wavelength number. The Fresnel
equation is discretized as a system of ordinary differential
equations. The stability and accuracy of our program were
tested using some typical values of the previous experiment
[5].

For simplicity, we consider a two-dimensional tapered non-
linear waveguide of widths W, and WO at the input and output
ends, respectively and a uniform nonlinear waveguide of width
IVi. Assume the waveguide is initially excited with a laser light
of wavelength ~ = 1.3 flm, power Pi = 0.4 N 3.2 W/mm,
and Gaussian field distribution [4] as given by

(2)

For the numerical calculation, we use W; = 5 ~m, W. =

1 ,um, no = 1.55, ng = 1.57, a = 3.3776 x 10-12 m2/V2 [9],
[10], Ax= Az = 0.2 Lm, and the waveguide length L is 100
vm. From our calculated results, it is found that within the
power of interest, i.e. the power large enough to have one or
two solitons emitted, our explicit scheme is applicable.

Fig. 1 shows the typical field distributions, of the tapered and
the uniform nonlinear waveguides. As can be seen from the
figure, the distance required for the formation of the solitons
from the initial Gaussian excitation is shorter for a tapered
waveguide even when launched with a lower input power.
Fig. 2 shows the formation distance of the solitons vs. the input

power. When the input power is low, no solitons are emitted.
Only when the input power is greater than a certain threshold
will the first solitons be emitted. Obviously, the tapered
waveguide has a lower threshold than that of the uniform one.
This is converging of the optical energy in a tapered waveguide
increases the nonlinearity near the waveguide interfaces, and
therefore, enhances the formation of the solitons. As the input
power increases further, the formation distance decays very
rapidly, which is due to the fact that the input energy is just
about equal to that of the first solitons. For an even larger
power, the formation distance decays less rapidly but with
an oscillatory behavior. This due to the fact that the excess
energy included in the initial Gaussian excitation interacts with
the emitted solitons, which drags slightly the emission of the
solitons.
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Fig. 3. (a) The output power trapped in waveguide and (b) the output power
of emitted solitons. Solid line: tapered wavegnide; dashed line: unifcam
waveguide.

Fig. 2 also shows the distance of the emitted soliton offset

from the centra~l axis of the waveguide. When the input

power is lower than the threshold, the offset is zero, just

as expected. As the power increases, h can be seen that the

tapered waveguide has a larger offset than that of the uniform

one. And the larger the input power, the more the offset, which

means a taperecl waveguide can greatly enhance the spatial

angle when it is used in a power-controlled optical scanner.

Fig. 3 shows the power trapped inside the waveguide (Ii)

and tie power emitted by the solitons (P.) for the tapered
and the uniform waveguides. From Fig. 3(a), the sequence of
threshold is clearly seen [1], also the first threshold occurs
for the first emission of solitons, but the tapered waveguide
emits solitons earlier and also switches off clearer than the
uniform waveguide does. From this figure, following up to
the second threshold, the corresponding second solitons au-e
also emitted. Fig. 3(b) shows that the tapered waveguide has
a lower threshold for soliton emission and a higher efficiency
of soliton transmission. For example, when Pi = 1.0 W/mlm,
the first solitons are emitted from the tapered waveguide and
the transmission efficiency q. (= P./Pi) is 99.07%, however
when Pi = 1.6 W/mm, the first solitons are emitted from the
uniform waveguide and its ~~ is only 78.95Y0. Moreover, wh(en
P, == 2.2 and 2.6 W/mm, there are second solitons emitted
from the tapered and the uniform waveguides, respectively.

III. CONCLUSION

In conclusion, the transient behavior of a nonlinear tapered
optical waveguide with an input Gaussian field distribution
is presented. The calculated results show that the nonlinear
tapered waveguide has a shorter soliton formation distance,
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a larger soliton offset. Varying the input power continuously,
the device can be used as a power-controlled scanner. The
threshold behavior can be used as logic elements for all-
optical switching circuits [1]. Moreover, the combination
of the Runge-Kutta and the semivectorial-poltized finite
difference method is a simple and effective way for nonlinear
beam propagation analysis. Further application on the beam
propagation analysis of other waveguide devices is of great
interest in the future.
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